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* Time series data that records patients’ visits to hospitals
* Including a wide range of medical data
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Challenges in EMR

Medical
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An example patient’s time series EMR data with lab tests (eGFR, HbAIc, Creatinine, Glucose),
diagnoses (N18.3,N17.9, El 1.9), medications (Insulin) and procedures (Dialysis). This
longitudinal patient matrix denotes different challenges in EMR data.
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Predictive Application
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Disease Progression Modeling Others

Basic Application
—_|T_++:‘: Diabetes Phenotype
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I I I Diabetes with renal manifestations
O Abnormal HbAIC
Abnormal Blood Pressure
Abnormal Cholesterol
Input images Deep learning model
Cohort Analysis Medical Feature Embedding Phenotyping Image Analysis




NS
TINUS

Disease Progression Modelling L

Comparably Stable Progression Trajectory
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Irregularity Challenge

Two-Level Irregularity
" Visit-level irregularity, Feature-level irregularity

* Visit-Level Irregularity

* EMR data appears irregularly with time

" Time span between consecutive visits is irregular
* Feature-Level Irregularity

= Same feature appears irregularly in EMR data with time

* Time span between a feature’s consecutive occurrences is irregular

10
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Irregularity Challenge

Electronic Medical Records (EMR)
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Methodology
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Prediction Module
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Back-propagation algorithm for updating the model parameters
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Evaluation

ADNI dataset

* Public Alzheimer’s disease dataset from Alzheimer’s Disease Neuroimaging Initiative

= Severity is measured by Mini-Mental State Examination (MMSE) test (€ [0,30])

NUH-CKD dataset

= Extract from a chronic kidney disease (CKD) dataset from National University
Hospital in Singapore

= Choose patients with Stage 3 CKD or higher as cohort, “NUH-CKD” dataset

= Severity is measured by Glomerular Filtration Rate (GFR) test (€ [0,60])

Evaluation metrics
= Mean squared error (MSE)

* Pearson product-moment correlation coefficient (R) value
15
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Dataset

ADNI1 Dataset

NUH-CKD Dataset

# of medical features
# of demo. features

# of patients
Time span

# of time steps

CutPoint (¢,,) setting
# of samples

591

3 — age, gender,
education time
819

4 years, M00 to M43,
(“M” — “month”)
7 (aggregated by
every 6 months)
M12, M18, M24
t¢ =M12: 1529

Ly =M18: 1200

ty, =M24: 558

603
2 — age, gender

2740
1 year, W00 to W52,
((Cw” . C(Week”)

52 (aggregated by
every week)
W16, W24, W32
Ly, =W16: 3601

Ly, =W24: 2793
t¢=W32: 1585
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GRU-based baselines
= Window-Based Model

" Visit-Level Model
" Visit-Level Time Decay Model

Multi-task learning (MTL) methods (zhou et al., 2012)
* Least Convex Fused Group Lasso (cFSGL)

= Least Non-Convex Fused Group Lasso (nFSGL), denote two formulations as nFSGL-|
and nFSGL-2 in experiments

Our proposed method

" Feature-Level Time Decay Model

17
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Figure: Experimental results in the ADNI dataset

* For the same CutPoint setting, from Window-Based Model to Feature-Level Time
Decay Model, performance is mainly on the ascending trend; Feature-Level Time
Decay Model more accurate than MTL-based methods;

* When CutPoint becomes larger, MSE values of GRU-based models decrease

K. Zheng,W.Wang, J. Gao, K.Y. Ngiam, B.C. Ooi and W.L.J.Yip: Capturing Feature-Level Irregularity in Disease Progression Modeling. CIKM 2017. g
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Figure: Experimental results in the NUH-CKD dataset

FromW 16 to W24, GRU-based models achieve larger MSE values -

number of samples

Window-Based Model
E= Visit-Level Model

CutPoint Setting

features

series

W16

Both the sample length and sample number affect the model performance

From W24 to W32, GRU-based models achieve smaller MSE values -

K. Zheng,W.Wang, J. Gao, K.Y. Ngiam, B.C. Ooi and W.L.J.Yip: Capturing Feature-Level Irregularity in Disease Progression Modeling. CIKM 2017. |9
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Summary

I. Identify the irregularity characteristic residing in EMR data
both at the visit level and at the feature level

Il. Capturing feature-level irregularity can benefit EMR data
analytics through Feature-Level Time Decay Model

* Handle feature-level irregularity
* Decay the influence of previous information on patients’ current state

* Learn decaying parameters for different features

Ill. Evaluate proposed Feature-Level Time Decay Model in both a
public ADNI dataset and a private NUH-CKD dataset for two
chronic disease cohorts
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How Is EMR Data Generated?

» Say Patient| visits hospital 12 times per year

= Regularly sampled?
= Patientl| visits hospital on the first day of every month?

= Randomly sampled!?

= Everyday, Patient| tosses 5 coins, if all heads (1/32 probability), visits
hospital?

* No, Patientl visits hospital only when Patient| feels sick

= EMR data is not regularly or randomly sampled

22
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How Is EMR Data Generated?

= Patient| always visits hospital
due to respiratory infection

P(Respiratory Infection) B =  Can we conclude that Patient| has
|\\ CURED / respiratory infection every day!?

~
---———-__

year = Patient2 always visits hospital
due to chronic kidney disease

= Can we conclude that Patient2 has
chronic kidney disease every day?

5————_—————""

v,’jj. p(Shronic Kidney Disease) j' -
NOT CURED

" What is the difference?

+: - + Time

| year

23
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Bias in EMR Data 9% s

* |f a doctor or analyst want to analyze the EMR data with missing
values, they may employ traditional imputation methods directly

= - Misinterpretation

Acute kidney ? Last observation carried
failure (AKF) NIZ9 || 2 ? | NIZ9 ? ? forward
t1 t, ts3 ty ts te time ]
Glomerular
filtration rate (GFR) [ 20 ? ? ? 40 ? ? Mean imputation

ty t, t3 ty ts te time

24




NS
TINUS
95

National University
of Singapore

Bias in EMR Data

* Bias — recorded EMR series is different from patients’ actual hidden
conditions

= Patients tend to visit hospital more often when they feel sick
" Doctors tend to prescribe the lab examinations that show abnormality

* To Solve Bias Challenge — EMR Regularization

= Transform the biased EMR series into unbiased EMR series
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N PPN . Regularization >
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Resolving Bias in EMR Data
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= Condition Change Rate (CCR)

Measure how a medical feature
is likely to change from its
condition in the previous
observation

" Observation Rate (OR)

Measure the probability that a
medical feature is exposed at a
time point based on its actual
condition at that time point

26
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Resolving Bias in EMR Data

" |mputation accuracy evaluation
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K.Zheng, J. Gao, K.Y. Ngiam, B. C. Ooi and W.L.Yip: Resolving the Bias in Electronic Medical Records. ACM KDD, 2017 27
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Resolving Bias in EMR Data
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Figure: MSE for NUH-CKD disease progression modelling

K. Zheng, J. Gao, K.Y. Ngiam, B. C. Ooi and W.L.Yip: Resolving the Bias in Electronic Medical Records. ACM KDD, 2017 28
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Resolving Bias in EMR Data
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Figure: R value for NUH-CKD disease progression modelling

K. Zheng, J. Gao, K.Y. Ngiam, B. C. Ooi and W.L.Yip: Resolving the Bias in Electronic Medical Records. ACM KDD, 2017 29
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Summary

= EMR Regularization to Resolve Bias

Consider CCR and OR as characteristics of medical features

Employ an HMM variant for learning and inference

Impute missing values in EMR data more accurately

Improve the analytic performance after resolving the bias

= Possible Extensions:

" Model different diseases jointly in the probabilistic graphical model for
capturing the relationships in between

* Model the patient personalization as different patients might behave
differently in terms of CCR and OR
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GEMINI Platform

Application gy S
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Overview of GEMINI

https://www.comp.nus.edu.sg/~dbsystem/gemini/ 32



Advice to Doctors on Intervention
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Patient 2 Patient 3
GFR Value
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* Suggest to guarantee the monitoring for Patient | = may need dialysis or kidney transplant

 Suggest healthcare workers to provide more aggressive interventions to Patient 2 in advance

» Suggest to guarantee the monitoring for Patient 3
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